题目内容
在直角坐标平面上,O为原点,M为动点,,.过点M作MM1⊥轴于M1,过N作NN1⊥轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线交曲线C于两个不同的点P、Q(点Q在A与P之间).
(Ⅰ)求曲线C的方程;
(Ⅱ)证明不存在直线,使得;
(Ⅲ)过点P作轴的平行线与曲线C的另一交点为S,若,证明.
(Ⅰ)曲线C的方程: (2)同解析 (3)同解析
解析:
(1)解:设点T的坐标为,点M的坐标为,则M1的坐标为
∴点N的坐标为
∴N1的坐标为 ∴
由有
∴ 由此得
由有
∴ 即,即为所求的方程.曲线C为椭圆.
(2)证:点A(5,0)在曲线C即椭圆的外部,当直线的斜率不存在时,直线与椭圆C无交点,所以直线斜率存在,并设为.直线的方程为.
由方程组 得
依题意,得.
当时,设交点,PQ的中点为R,则
,
∴
又BR⊥
但不可能成立,所以不存在直线使得.
(3)证明:由题有S,.
则有方程组
由(1)得:
将(2)、(5)代入(3)有
整理并将(4)、(5)代入得
易知,解得
因,故,,
∴
∴.
练习册系列答案
相关题目