题目内容
用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应该写成( )A.假设当n=k(k∈N*)时,xk+yk能被x+y整除
B.假设当n=2k(k∈N*)时,xk+yk能被x+y整除?
C.假设当n=2k+1(k∈N*)时,xk+yk能被x+y整除
D.假设当n=2k-1(k∈N*)时,xk+yk能被x+y整除
解析:∵n为正奇数,∴N0=1.?
∴假设当n=2k-1(k∈N*).?
答案:D
练习册系列答案
相关题目
题目内容
用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应该写成( )A.假设当n=k(k∈N*)时,xk+yk能被x+y整除
B.假设当n=2k(k∈N*)时,xk+yk能被x+y整除?
C.假设当n=2k+1(k∈N*)时,xk+yk能被x+y整除
D.假设当n=2k-1(k∈N*)时,xk+yk能被x+y整除
解析:∵n为正奇数,∴N0=1.?
∴假设当n=2k-1(k∈N*).?
答案:D