题目内容
函数f(x)=3sin(2x-
)的图象为C,给出四个结论:
①图象C关于直线x=
π对称;
②图象C关于点(
,0)对称;
③函数f(x)在区间(-
,
)上是增函数;
④由y=3sin2x的图象向右平移
个单位长度可以得到图象C.
其中正确结论的个数是( )
π |
3 |
①图象C关于直线x=
11 |
12 |
②图象C关于点(
2π |
3 |
③函数f(x)在区间(-
π |
12 |
5π |
12 |
④由y=3sin2x的图象向右平移
π |
3 |
其中正确结论的个数是( )
A、1 | B、2 | C、3 | D、4 |
分析:当x=
π 时,函数值为3sin
π=-3,为最小值,故图象C关于直线x=
π对称,故 ①正确.
当x=
π 时,函数值为 sinπ=0,故图象C关于点(
,0)对称,故②正确.
由 2kπ-
≤2x-
≤2kπ+
,k∈z,可得函数的增区间为(kπ-
,kπ+
),故 ③正确.
由y=3sin2x的图象向右平移
个单位长度可以得到y=3sin2(x-
)=3sin(2x-
)的图象,故④不正确.
11 |
12 |
3 |
2 |
11 |
12 |
当x=
2 |
3 |
2π |
3 |
由 2kπ-
π |
2 |
π |
3 |
π |
2 |
π |
12 |
5π |
12 |
由y=3sin2x的图象向右平移
π |
3 |
π |
3 |
2π |
3 |
解答:解:对于函数f(x)=3sin(2x-
),当x=
π 时,函数值为3sin
π=-3,为最小值,
故图象C关于直线x=
π对称,故 ①正确.
当x=
π 时,函数值为 sinπ=0,故图象C关于点(
,0)对称,故②正确.
由 2kπ-
≤2x-
≤2kπ+
,k∈z,可得 kπ-
≤x≤kπ+
,故函数的增区间为(kπ-
,kπ+
),
故函数f(x)在区间(-
,
)上是增函数,故 ③正确.
由y=3sin2x的图象向右平移
个单位长度可以得到y=3sin2(x-
)=3sin(2x-
)的图象,故④不正确.
故只有 ①②③正确,
故选 C.
π |
3 |
11 |
12 |
3 |
2 |
故图象C关于直线x=
11 |
12 |
当x=
2 |
3 |
2π |
3 |
由 2kπ-
π |
2 |
π |
3 |
π |
2 |
π |
12 |
5π |
12 |
π |
12 |
5π |
12 |
故函数f(x)在区间(-
π |
12 |
5π |
12 |
由y=3sin2x的图象向右平移
π |
3 |
π |
3 |
2π |
3 |
故只有 ①②③正确,
故选 C.
点评:本题考查正弦函数的对称性,函数y=Asin(ωx+∅)的图象变换,掌握函数y=Asin(ωx+∅)的图象性质,是解题的
关键.
关键.

练习册系列答案
相关题目