题目内容
设函数f(x)=x3-
x2+6x-a.
(1)对于任意实数x,f′(x)≥m在(1,5]恒成立(其中f′(x)表示f(x)的导函数),求m的最大值;
(2)若方程f(x)=0在R上有且仅有一个实根,求a的取值范围.
9 | 2 |
(1)对于任意实数x,f′(x)≥m在(1,5]恒成立(其中f′(x)表示f(x)的导函数),求m的最大值;
(2)若方程f(x)=0在R上有且仅有一个实根,求a的取值范围.
分析:(1)f′(x)≥m在(1,5]恒成立,等价于m≤3x2-9x+6在(1,5]恒成立,等价于m≤(3x2-9x+6)min,根据二次函数的性质即可求得其最小值;
(2)结合图象,方程f(x)=0在R上有且仅有一个实根,等价于函数f(x)只有一个零点,利用导数求出函数f(x)的极大值、极小值,只需令极大值小于0或极小值大于0即可;
(2)结合图象,方程f(x)=0在R上有且仅有一个实根,等价于函数f(x)只有一个零点,利用导数求出函数f(x)的极大值、极小值,只需令极大值小于0或极小值大于0即可;
解答:解:(1)f′(x)=3x2-9x+6,
f′(x)≥m在(1,5]恒成立,等价于m≤3x2-9x+6在(1,5]恒成立,
由f′(x)=3x2-9x+6=3(x-
)2-
在[1,5]上的最小值为-
,
所以m≤-
,即m的最大值为-
.
(2)f′(x)=3x2-9x+6=3(x-1)(x-2),
当x<1或x>2时f′(x)>0,当1<x<2时f′(x)<0,
所以函数f(x)在(-∞,1)和(2,+∞)上单调递增,在(1,2)上单调递减,
所以f(x)极大值=f(1)=
-a,f(x)极小值=f(2)=2-a,
故当f(1)<0或f(2)>0时,方程f(x)=0在R上有且仅有一个实根,解得a>
或a<2,
所以所求a的取值范围为:(-∞,2)∪(
,+∞).
f′(x)≥m在(1,5]恒成立,等价于m≤3x2-9x+6在(1,5]恒成立,
由f′(x)=3x2-9x+6=3(x-
3 |
2 |
3 |
4 |
3 |
4 |
所以m≤-
3 |
4 |
3 |
4 |
(2)f′(x)=3x2-9x+6=3(x-1)(x-2),
当x<1或x>2时f′(x)>0,当1<x<2时f′(x)<0,
所以函数f(x)在(-∞,1)和(2,+∞)上单调递增,在(1,2)上单调递减,
所以f(x)极大值=f(1)=
5 |
2 |
故当f(1)<0或f(2)>0时,方程f(x)=0在R上有且仅有一个实根,解得a>
5 |
2 |
所以所求a的取值范围为:(-∞,2)∪(
5 |
2 |
点评:本题考查利用导数求函数的最值、函数恒成立及函数的零点,考查转化思想、数形结合思想,考查学生分析解决问题的能力,恒成立问题常转化为函数最值问题解决,而方程根的个数可转化为函数零点解决.
练习册系列答案
相关题目
设函数f(x)=x3-(
)x-2,则其零点所在区间为( )
1 |
2 |
A、(0,1) |
B、(1,2) |
C、(2,3) |
D、(3,4) |