题目内容
【题目】已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为 .
【答案】1
【解析】解:函数f(x)=ax﹣lnx,可得f′(x)=a﹣ ,切线的斜率为:k=f′(1)=a﹣1,
切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),
l在y轴上的截距为:a+(a﹣1)(﹣1)=1.
所以答案是:1.
【考点精析】关于本题考查的导数的几何意义和基本求导法则,需要了解通过图像,我们可以看出当点趋近于时,直线与曲线相切.容易知道,割线的斜率是,当点趋近于时,函数在处的导数就是切线PT的斜率k,即;若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.
练习册系列答案
相关题目
【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间(t),结果如下:
类别 | 铁观音 | 龙井 | 金骏眉 | 大红袍 |
顾客数(人) | 20 | 30 | 40 | 10 |
时间t(分钟/人) | 2 | 3 | 4 | 6 |
注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.