题目内容
若F1、F2分别为双曲线-=1的下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足.
(1)求此双曲线的离心率.
(2)若此双曲线过点N(,2),求此双曲线的方程.
(3)若过点N(,2)的双曲线的虚轴端点分别为B1,B2(B2在x轴的正半轴上),点A,B在双曲线上,且,求当时,直线AB的方程.
答案:
练习册系列答案
相关题目
已知F1,F2分别为双曲
-
=1(a>0,b>0)的左、右焦点,P为双曲线左支上任一点,若
的最小值为8a,则双曲线的离心率e的取值范围是( )
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A、(1,+∞) |
B、(0,3] |
C、(1,3] |
D、(0,2] |