题目内容

6.定义在R上的函数f(x)满足f(x+6)=f(x),当-3<x≤-1时,f(x)=-(x+2)2,当-1≤x≤3时,f(x)=x.则f(1)+f(2)+…+f(2015)的值为(  )
A.335B.340C.1680D.2015

分析 可得函数f(x)是R上周期为6的周期函数,计算f(1)+f(2)+f(3)+f(4)+f(5)+f(6)可得结论.

解答 解:∵定义在R上的函数f(x)满足f(x+6)=f(x),
∴函数f(x)是R上周期为6的周期函数,
∵当-3<x≤-1时,f(x)=-(x+2)2,当-1≤x≤3时,f(x)=x,
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)
=f(1)+f(2)+f(3)+f(-2)+f(-1)+f(0)
=1+2+3+0-1+0=5,
∴f(1)+f(2)+…+f(2015)
=335×5+1+2+3+0-1=1680
故选:C.

点评 本题考查函数的周期性,涉及函数值的求解,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网