题目内容
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.
【答案】
(1)解:∵cos2C+2 cosC+2=0.
∴2cos2C+2 cosC+1=0,
即( cosC+1)2=0,
∴cosC=﹣
∵0<∠C<π,
∴∠C= .
(2)解:∵c2=a2+b2﹣2abcosC=3a2+2a2=5a2,
∴c= a,
∴sinC= sinA,
∴sinA= sinC= ,
∵S△ABC= absinC= sinAsinB,
∴ absinC= sinAsinB,
∴ sinC=( )2sinC= ,
∴c= =1
【解析】(1)利用正弦定理和已知等式,化简可求得cosC的值,进而求C.(2)利用余弦定理可求得c与a的关系,进而求得sinC,然后利用三角形面积公式和已知等式求得c.
练习册系列答案
相关题目