题目内容

已知函数f(x)满足:f(p+q)=f(p)•f(q),f(1)=2,则:
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=______.
∵函数f(x)满足f(p+q)=f(p)•f(q),
∴令q=1,则f(p+1)=f(p)f(1),
f(p+1)
f(p)
=f(1),
又∵f(1)=2,
f(p+1)
f(p)
=2,
f(2)
f(1)
=2
f(4)
f(3)
=2
,…,
f(2014)
f(2013)
=2

f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=2+2+…+2=2×1007=2014,
∴:
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=2014.
故答案为:2014.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网