题目内容
已知函数f(x)定义在区间![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/2.png)
(I)在(-1,1)内求一个实数t,使得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/3.png)
(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_ST/5.png)
【答案】分析:(I)由
,能求出实数t.
(II)由
,且
,知
,由此能够证明数列{f(an)}是等比数列,并能求出f(an)的表达式.
(III)由
,知
,则
<0,故{cn}是减数列,由此能够推导出存在m∈N*,使得对任意n∈N*,
恒成立.
解答:解:(I)
,
∴
…(2分)
(II)∵
,
且
,
∴
,
即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/13.png)
∴{f(an)}是以-1为首项,2为公比的等比数列,
∴
.…(6分)
(III)由(II)得,
…(8分)
∴
,…(9分)
则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/17.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/18.png)
=
<0,
∴{cn}是减数列,
∴
,
要使
对任意n∈N*恒成立,
只需
,
即
,
故
,或
,
∴0<m<
,或
,
∴当m≥12,且m∈N*时,
对任意n∈N*恒成立,
∴m的最小正整数值为12.
点评:本题考查数列与函数的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/0.png)
(II)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/3.png)
(III)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/7.png)
解答:解:(I)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/8.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/9.png)
(II)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/10.png)
且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/11.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/12.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/13.png)
∴{f(an)}是以-1为首项,2为公比的等比数列,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/14.png)
(III)由(II)得,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/15.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/16.png)
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/17.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/18.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/19.png)
∴{cn}是减数列,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/20.png)
要使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/21.png)
只需
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/22.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/23.png)
故
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/25.png)
∴0<m<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/27.png)
∴当m≥12,且m∈N*时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101716580219832/SYS201311031017165802198020_DA/28.png)
∴m的最小正整数值为12.
点评:本题考查数列与函数的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目