题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ).
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
【解析】由f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数,又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.
练习册系列答案
相关题目
题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ).
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
【解析】由f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数,又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4,即F(x)>4=F(-1),所以x>-1.