题目内容
设![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/2.png)
(1)写出函数f(x)的最小正周期;
(2)试用“五点法”画出函数f(x)在区间
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/3.png)
(3)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_ST/images5.png)
【答案】分析:(1)先利用向量数量积的坐标运算写出函数f(x)的解析式,再利用二倍角公式和两角和的正弦公式将函数化简为y=Asin(ωx+φ)的形式,最后由周期公式即可得f(x)的最小正周期
(2)由(1)f(x)=
,利用五点法,即将2x+
看成整体取正弦函数的五个关键点,通过列表、描点、连线画出函数图象,用图象变换的方法得此函数图象,可以先向左平移,再横向伸缩,再向上平移的顺序进行
(3)
,
,求此函数的最值可先将2x+
看成整体,求正弦函数的值域,最后利用函数g(x)=f(x)+m的最小值为2,解方程可得m的值,进而求出函数最大值
解答:解:(1)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/6.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/7.png)
(2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/images22.png)
y=sinx向左平移
得到
,再保持纵坐标不变,横坐标缩短为原为的
变为
最后再向上平移
个单位得到![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/27.png)
(3)
,
∵
,
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/30.png)
∴
,
∴
,
∴m=2,
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/33.png)
当
即
时g(x)最大,最大值为
.
点评:本题综合考察了三角变换公式的运用,三角函数的图象画法,三角函数图象变换,及复合三角函数值域的求法.
(2)由(1)f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/1.png)
(3)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/4.png)
解答:解:(1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/7.png)
(2)
x | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | π | ![]() | 2π | |
sin(![]() | 1 | -1 | |||
y | ![]() | ![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/images22.png)
y=sinx向左平移
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/27.png)
(3)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/28.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/29.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/30.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/31.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/32.png)
∴m=2,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/33.png)
当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225703286021826/SYS201311012257032860218019_DA/36.png)
点评:本题综合考察了三角变换公式的运用,三角函数的图象画法,三角函数图象变换,及复合三角函数值域的求法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目