题目内容

2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是

   A.  60              B. 48               C. 42               D. 36

B


解析:

解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。

解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:

第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;

第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法

第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。

此时共有=12种排法

 三类之和为24+12+12=48种。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网