题目内容
【题目】已知抛物线上一点到焦点的距离.
(1)求抛物线的方程;
(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.
【答案】(1)(2)见解析
【解析】
(1)由题意确定p的值即可确定抛物线方程;
(2)很明显切线斜率存在,由圆心到直线的距离等于半径可得是方程的两根,联立直线方程与抛物线方程可得点的横坐标 .结合韦达定理将原问题转化为求解函数的值域的问题即可.
(1)由抛物线定义,得,由题意得:
解得
所以,抛物线的方程为.
(2)由题意知,过引圆的切线斜率存在,设切线的方程为,则圆心到切线的距离,整理得,.
设切线的方程为,同理可得.
所以,是方程的两根,.
设,由得,,
由韦达定理知,,所以,同理可得.
设点的横坐标为,则
.
设,则,
所以,,对称轴,所以
练习册系列答案
相关题目