题目内容
【题目】已知点A(0,4),抛物线C:x2=2py(0<p<4)的准线为1,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则抛物线方程为_____.
【答案】
【解析】
设抛物线的焦点为F(),则|AF|=4,由抛物线的定义可知,|PH|=|PF|=|PA|,不妨设点P在第一象限,过点P作PQ⊥y轴于点Q,则Q为AF的中点,结合∠APH=120°,可以用p表示出点P的坐标,然后将其代入抛物线方程,列出关于p的方程,解之可得p的值,从而求得抛物线的方程.
解:设抛物线的焦点为F(),|AF|=4,由抛物线的定义可知,|PH|=|PF|,
∵|PH|=|PA|,∴|PA|=|PF|,
不妨设点P在第一象限,过点P作PQ⊥y轴于点Q,则Q为AF的中点,|AQ|=|FQ||AF|,
∵∠APH=120°,∴∠APQ=120°﹣90°=30°,∴|PQ|,|OQ|=|FQ|+|OF|2,
∴点P的坐标为,
∵点P在抛物线C上,∴,化简得5p2+112p﹣192=0,解之得(舍负),
∴抛物线方程为.
故答案为:.
【题目】海南盛产各种名贵树木,如紫檀、黄花梨等.在实际测量单根原木材体积时,可以检量木材的实际长度(检尺长)和小头直径(检尺径),再通过国家公布的原木材积表直接查询得到,原木材积表的部分数据如下所示:
检尺径 () | 检尺长() | ||||
2.0 | 2.2 | 2.4 | 2.5 | 2.6 | |
材积() | |||||
8 | 0.0130 | 0.0150 | 0.0160 | 0.0170 | 0.0180 |
10 | 0.0190 | 0.0220 | 0.0240 | 0.0250 | 0.0260 |
12 | 0.0270 | 0.0300 | 0.0330 | 0.0350 | 0.0370 |
14 | 0.0360 | 0.0400 | 0.0450 | 0.0470 | 0.0490 |
16 | 0.0470 | 0.0520 | 0.0580 | 0.0600 | 0.0630 |
18 | 0.0590 | 0.0650 | 0.0720 | 0.0760 | 0.0790 |
20 | 0.0720 | 0.0800 | 0.0880 | 0.0920 | 0.0970 |
22 | 0.0860 | 0.0960 | 0.1060 | 0.1110 | 0.1160 |
24 | 0.1020 | 0.1140 | 0.1250 | 0.1310 | 0.1370 |
若小李购买了两根紫檀原木,一根检尺长为,检尺径为,另一根检尺长为,检尺径为,根据上表,可知两根原木的材积之和为______.