题目内容

精英家教网设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使
OM
ON
=0
,其中点O为坐标原点.
分析:(1)首先利用余弦定理写出d1和d2的等量关系式,然后把它变形为(d1-d22=*的形式,即|d1-d2|=*的形式,此时满足双曲线的定义,则问题得证,最后由双曲线的标准方程形式即可写出其方程.
(2)首先根据直线MN是否垂直于x轴进行讨论,若直线MN垂直于x轴,则直线方程为x=1,又
OM
ON
=0可得M、N的坐标,代入双曲线方程即得λ的值;若直线MN不垂直于x轴,则设其点斜式方程,并与双曲线方程联立方程组,可消y得x的一元二次方程,再由根与系数的关系用k与λ的代数式表示出x1+x2和x1x2,进而由
OM
ON
=0及x1+x2>0,x1x2>0通过整理消去k得到λ的不等式,此时解不等式即可,最后把两种情况综合之.
解答:(1)证明:在△PAB中,|AB|=2,即22=d12+d22-2d1d2cos2θ,4=(d1-d22+4d1d2sin2θ,
|d1-d2|=
4-4d1d2sin2θ
=2
1-λ
<2
(常数),
所以点P的轨迹C是以A,B为焦点,实轴长2a=2
1-λ
的双曲线.
又b2=1-(1-λ),所以C的方程为:
x2
1-λ
-
y2
λ
=1


(2)解:设M(x1,y1),N(x2,y2
①当MN垂直于x轴时,MN的方程为x=1,M(1,1),N(1,-1)在双曲线上.
1
1-λ
-
1
λ
=1?λ2+λ-1=0?λ=
-1±
5
2
,因为0<λ<1,所以λ=
5
-1
2

②当MN不垂直于x轴时,设MN的方程为y=k(x-1).
x2
1-λ
-
y2
λ
=1
y=k(x-1)
得:[λ-(1-λ)k2]x2+2(1-λ)k2x-(1-λ)(k2+λ)=0,
由题意知:[λ-(1-λ)k2]≠0,
所以x1+x2=
-2k2(1-λ)
λ-(1-λ)k2
x1x2=
-(1-λ)(k2+λ)
λ-(1-λ)k2

于是:y1y2=k2(x1-1)(x2-1)=
k2λ2
λ-(1-λ)k2

因为
OM
ON
=0
,且M,N在双曲线右支上,所以
x1x2+y1y2=0
x1+x2>0
x1x2>0
?
k2=
λ(1-λ)
λ2+λ-1
k2
λ
1-λ
?
λ(1-λ)
λ2+λ-1
λ
1-λ
λ2+λ-1>0
?
5
-1
2
<λ<
2
3

由①②知,λ的取值范围是:
5
-1
2
≤λ<
2
3
点评:本题考查双曲线的定义、标准方程及直线与圆锥曲线的位置关系,综合性强,字母运算量大,且需分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网