题目内容
已知直线l过坐标原点,抛物线C顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
【答案】分析:先设出抛物线的标准方程和直线l的方程,根据A'、B'分别是A、B关于l的对称点,进而可知A'A⊥l,进而可得直线A'A的方程,把两直线方程联立求得交点M的坐标,进而根据M为AA'的中点,求得A'点的坐标和B'的坐标,分别代入抛物线方程求得p的表达式,最后联立求得k,进而求得p,则直线和抛物线的方程可得.
解答:解:依题设抛物线C的方程可写为
y2=2px(p>0),
且x轴和y轴不是所求直线,又l过原点,因而可设l的方程为
y=kx(k≠0).①
设A'、B'分别是A、B关于l的对称点,因而A'A⊥l,直线A'A的方程为②
由①、②联立解得AA'与l的交点M的坐标为.
又M为AA'的中点,从而点A'的坐标为
xA'=,
yA'=.③
同理得点B'的坐标为
xB'=,yB'=.④
又A'、B'均在抛物线y2=2px(p>0)上,由③得,由此知k≠±1,
即⑤
同理由④得.
即.
从而=,
整理得k2-k-1=0.
解得
但当时,由③知,
这与A'在抛物线y2=2px(p>0)上矛盾,故舍去.
设,则直线l的方程为.
将代入⑤,求得.
所以直线方程为.
抛物线方程为.
点评:本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.
解答:解:依题设抛物线C的方程可写为
y2=2px(p>0),
且x轴和y轴不是所求直线,又l过原点,因而可设l的方程为
y=kx(k≠0).①
设A'、B'分别是A、B关于l的对称点,因而A'A⊥l,直线A'A的方程为②
由①、②联立解得AA'与l的交点M的坐标为.
又M为AA'的中点,从而点A'的坐标为
xA'=,
yA'=.③
同理得点B'的坐标为
xB'=,yB'=.④
又A'、B'均在抛物线y2=2px(p>0)上,由③得,由此知k≠±1,
即⑤
同理由④得.
即.
从而=,
整理得k2-k-1=0.
解得
但当时,由③知,
这与A'在抛物线y2=2px(p>0)上矛盾,故舍去.
设,则直线l的方程为.
将代入⑤,求得.
所以直线方程为.
抛物线方程为.
点评:本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.
练习册系列答案
相关题目