题目内容
已知:数列{an}的通项公式为an=3n-1(n∈N*),等差数列{bn}中,bn>0且b1+b2+b3=15又a1+b1,a2+b2,a3+b3成等比.求:
(1)数列{bn}的通项公式.
(2)设数列cn=
(n∈N*),求数列{cn}的前n项和.
(1)数列{bn}的通项公式.
(2)设数列cn=
1 | bn2-1 |
分析:(1)可得b2=5,设等差数列{bn}的公差为d,可得(3+5)2=(1+5-d)(9+5+d),解之可得d,可得通项公式;
(2)可得cn=
=
=
=
(
-
),由裂项相消法即可求和.
(2)可得cn=
1 |
bn2-1 |
1 |
(2n+1)2-1 |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
解答:解:(1)由题意可得b1+b2+b3=3b2=15,即b2=5,
又由题意可得(a2+b2)2=(a1+b1)(a3+b3),
设等差数列{bn}的公差为d,
代入数据可得(3+5)2=(1+5-d)(9+5+d),
解之可得d=-10,或d=2,当d=-10不满足bn>0应舍去,
故d=2,bn=5+2(n-2)=2n+1;
(2)可得cn=
=
=
=
(
-
),
故数列{cn}的前n项和为:
(1-
+
-
+…+
-
)=
(1-
)=
又由题意可得(a2+b2)2=(a1+b1)(a3+b3),
设等差数列{bn}的公差为d,
代入数据可得(3+5)2=(1+5-d)(9+5+d),
解之可得d=-10,或d=2,当d=-10不满足bn>0应舍去,
故d=2,bn=5+2(n-2)=2n+1;
(2)可得cn=
1 |
bn2-1 |
1 |
(2n+1)2-1 |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
故数列{cn}的前n项和为:
1 |
4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
4 |
1 |
n+1 |
n |
4(n+1) |
点评:本题考查等差数列和等比数列的通项公式,涉及裂项相消法求和,属中档题.
练习册系列答案
相关题目