题目内容

【题目】已知a+b+c=2,且a、b、c是正数,求证: + +

【答案】证明:a+b+c=2,且a、b、c是正数,
可得1= (2a+2b+2c),
+ + =( + + )×1
= (2a+2b+2c)( + +
= [(a+b)+(b+c)+(c+a)]( + +
3 3
= (当且仅当a=b=c取得等号).
+ +
【解析】由条件可得1= (2a+2b+2c),则 + + = (2a+2b+2c)( + + )= [(a+b)+(b+c)+(c+a)]( + + ),再由三元基本不等式,以及不等式的可乘性,即可得证.
【考点精析】根据题目的已知条件,利用不等式的证明的相关知识可以得到问题的答案,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网