题目内容
如图,已知抛物线的方程为x2=2px(p>0,为常数),过点M(0,m)且倾斜角为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_ST/1.png)
(1)求m的值
(2)若点M分AB所成的比为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_ST/images3.png)
【答案】分析:(1)设AB方程为y=kx+m,代入x2=2py,得x2-2pkx-2pm=0,由此能求出m.
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,由此得到tanθ=
,从而能求出AB的方程.
解答:解:(1)设AB方程为y=kx+m代入x2=2py得x2-2pkx-2pm=0,①(3分)
由
得,-2pm=-p2
∴2m=p,即m=
,(6分)
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,
∴tanθ=
,(10分)
故AB方程为y=
.(12分)
点评:本题考查直线方程的求法,解题时要认真审题,注意抛物线性质和等价转化思想的合理运用.
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,由此得到tanθ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_DA/0.png)
解答:解:(1)设AB方程为y=kx+m代入x2=2py得x2-2pkx-2pm=0,①(3分)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_DA/1.png)
∴2m=p,即m=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_DA/2.png)
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,
∴tanθ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_DA/3.png)
故AB方程为y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102546757384807/SYS201311031025467573848020_DA/4.png)
点评:本题考查直线方程的求法,解题时要认真审题,注意抛物线性质和等价转化思想的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目