题目内容

如图,已知抛物线的方程为x2=2px(p>0,为常数),过点M(0,m)且倾斜角为的直线交抛物线于A(x1,y1),B(x2,y2)两点,且
(1)求m的值
(2)若点M分AB所成的比为,求直线AB的方程.

【答案】分析:(1)设AB方程为y=kx+m,代入x2=2py,得x2-2pkx-2pm=0,由此能求出m.
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,由此得到tanθ=,从而能求出AB的方程.
解答:解:(1)设AB方程为y=kx+m代入x2=2py得x2-2pkx-2pm=0,①(3分)
得,-2pm=-p2
∴2m=p,即m=,(6分)
(2)设|AA1|=|AM|=t,则|BB1|=|BM|=2t,
∴tanθ=,(10分)
故AB方程为y=.(12分)
点评:本题考查直线方程的求法,解题时要认真审题,注意抛物线性质和等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网