题目内容
选做题:坐标系与参数方程
已知直线l的参数方程:
(t为参数)和圆C的极坐标方程:ρ=2
cos(θ+
).
(1)将直线l的参数方程化为普通方程;将圆C的极坐标方程化为直角坐标方程,并写出圆心的极坐标.
(2)试判定直线l和圆C的位置关系.
已知直线l的参数方程:
|
| 2 |
| π |
| 4 |
(1)将直线l的参数方程化为普通方程;将圆C的极坐标方程化为直角坐标方程,并写出圆心的极坐标.
(2)试判定直线l和圆C的位置关系.
分析:(1)将直线l的参数方程的参数t消去即可求出直线的普通方程,利用极坐标转化成直角坐标的转换公式求出圆的直角坐标方程;
(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.
(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.
解答:解:(1)l的普通方程:y+4=
(x-1)(2分),
由ρ=2(cosθ-sinθ),得ρ2=2(ρcosθ-ρsinθ),故x2+y2=2x-2y,(4分)
圆心是(1,-1),其极坐标为(
,-
)(6分)
(2)圆心到直线的距离d=
(8分). d>
=r,所以直线l和圆C相离.(10分)
| 3 |
由ρ=2(cosθ-sinθ),得ρ2=2(ρcosθ-ρsinθ),故x2+y2=2x-2y,(4分)
圆心是(1,-1),其极坐标为(
| 2 |
| π |
| 4 |
(2)圆心到直线的距离d=
| 3 |
| 2 |
| 2 |
点评:本题主要考查了简单曲线的极坐标方程,以及直线的参数方程和直线与圆的位置关系的判定,属于基础题.
练习册系列答案
相关题目