题目内容

已知
sinx+cosx
sinx-cosx
=3,
(1)求tanx的值;
(2)若x是第三象限的角,化简三角式
1+sinx
1-sinx
-
1-sinx
1+sinx
,并求值.
分析:(1)把已知等式左边分子分母同时除以cosx,化为含有tanx的方程得答案;
(2)由角x的范围,得到cosx<0,把要化简的式子分母化为单项式,开放后化为含有tanx的代数式得答案.
解答:解:(1)由
sinx+cosx
sinx-cosx
=3,得cosx≠0,
tanx+1
tanx-1
=3
,解得:tanx=2;
(2)∵x是第三象限的角,
∴cosx<0.
又tanx=2.
1+sinx
1-sinx
-
1-sinx
1+sinx

=
(1+sinx)2
(1-sinx)(1+sinx)
-
(1-sinx)2
(1+sinx)(1-sinx)

=
1+sinx
|cosx|
-
1-sinx
|cosx|

=-
1+sinx
cosx
+
1-sinx
cosx

=
-1-sinx+1-sinx
cosx

=-2tanx
=-4.
点评:本题考查了同角三角函数基本关系式的应用,解答的原则是化繁为简,关键是熟记同角三角函数的基本关系式,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网