题目内容

函数f(x)=x|x+a|+b是奇函数的充要条件是(    )

A.ab="0" B.a+b="0" C.a=bD.=0

D

解析考点:函数奇偶性的判断;必要条件、充分条件与充要条件的判断.
专题:计算题.
分析:利用奇函数的定义“函数y=f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=-f(x),则这个函数叫做奇函数”建立恒等式,求出a、b的值即可.
解答:解:根据奇函数的定义可知
f(-x)=-x|a-x|+b=-f(x)=-x|x+a|-b对任意x恒成立
∴a=0,b=0,故选D
点评:本题主要考查了函数奇偶性的判断,以及必要条件、充分条件与充要条件的判断,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网