题目内容
12.某校随机抽取100名学生高中学业水平考试的X科成绩,并将成绩分成5组,得到频率分布表(部分)如下.(Ⅰ)直接写出频率分布表中①②③的值;
(Ⅱ)如果每组学生的平均分都是分组端点的平均值(例:第1组5个学生的平均分是$\frac{50+60}{2}=55$),估计该校学生本次学业水平测试X科的平均分;
(Ⅲ)学校向高校推荐了第5组的A、B、C和第4组的D、E一共5位同学,学业水平考试后,高校决定在这5名学生中随机抽取2名学生进行面试.求第4组至少有一名学生参加面试的概率?
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 5 | 0.05 |
第2组 | [60,70) | ① | 0.35 |
第3组 | [70,80) | 30 | ② |
第4组 | [80,90) | 20 | 0.20 |
第5组 | [90,100] | 10 | 0.10 |
合计 | 100 | ③ |
分析 (Ⅰ)利用频率=$\frac{频数}{总数}$,由已知条件能求出频率分布表中①②③的值.
(Ⅱ)由已知条件先求出第2~5组平均分,由此能求出该校学生X科的平均分.
(Ⅲ)从A、B、C、D、E中随机抽取2人,有10种不同的方法,其中第4组至少有一名学生参加有7种不同的方法,由此利用列举法能求出第4组至少有一名学生参加面试的概率.
解答 解:(Ⅰ)①35,②0.30,③1.00.…(3分)
(Ⅱ)第2~5组平均分依次是$\frac{60+70}{2}=65$、$\frac{70+80}{2}$=75、$\frac{80+90}{2}$=85、$\frac{90+100}{2}=95$.…(4分)
该校学生X科的平均分:
$\overline{x}$=$\frac{5×55+35×65+30×75+20×85+10×95}{100}$…(5分)
=74.5.…(6分)
(Ⅲ)从A、B、C、D、E中随机抽取2人,有(AB)(AC)(AD)(AE)(BC)(BD)(BE)(CD)(CE)(DE)10种不同的方法,…(9分),
其中第4组至少有一名学生参加有(AD)(AE)(BD)(BE)(CD)(CE)(DE)7种不同的方法…(10分),
∴第4组至少有一名学生参加面试的概率为p=$\frac{7}{10}$.…(11分)
答:第4组至少有一名学生参加面试的概率为$\frac{7}{10}$.…(12分).
点评 本题考查频率分布表的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
3.(文)已知全集U={x∈Z|0<x<8},M={2,3,5},$N=\left\{{\left.x\right|x_{\;}^2-8x+12=0}\right\}$,则集合{1,4,7}为( )
A. | M∪(∁UN) | B. | ∁U(M∩N) | C. | ∁U(M∪N) | D. | (∁UM)∩N |
20.已知向量$\overrightarrow a=(x,2)$与$\overrightarrow{b}$=(2,1)垂直,则$\overrightarrow a+2\overrightarrow b$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为( )
A. | $\frac{π}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
4.函数$f(x)={log_{\frac{1}{2}}}$cosx在x∈(0,2π)时的单调递增区间是( )
A. | $({0,\frac{π}{2}})$ | B. | (0,π) | C. | (π,2π) | D. | $({\frac{3π}{2},2π})$ |
2.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1):
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
附:临界值表参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过 4000元 | 经济损失超过 4000元 | 合计 | |
捐款超过 500元 | 30 | ||
捐款不超 过500元 | 6 | ||
合计 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |