题目内容

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.
分析:(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;
(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D(t,
3
4
(4-t),t)
,利用向量垂直于数量积得关系即可得出.
解答:(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
BC1
=(4,-3,4)
BA1
=(0,-3,4)
BB1
=(0,0,4)

设平面A1BC1的法向量为
n1
=(x1y1,z1)
,平面B1BC1的法向量为
n2
=(x2,y2,z2).
n1
BC1
=4x1-3y1+4z1=0
n1
BA1
=-3y1+4z1=0
,令y1=4,解得x1=0,z1=3,∴
n1
=(0,4,3)

n2
BC1
=4x2-3y2+4z2=0
n2
BB1
=4z2=0
,令x2=3,解得y2=4,z2=0,∴
n2
=(3,4,0)

cos<
n1
n2
=
n1
n2
|
n1
| |
n2
|
=
16
25
25
=
16
25

∴二面角A1-BC1-B1的余弦值为
16
25

(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D(t,
3
4
(4-t),t)

AD
=(t,
3
4
(4-t),t)
A1B
=(0,3,-4),
AD
A1B
,∴
AD
A1B
=0

0+
9
4
(4-t)-4t=0
,解得t=
36
25

BD
BC1
=
DE
CC1
=
9
25
点评:本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网