题目内容

在数列中,如果存在常数,使得对于任意正整数均成立,那么就称数列为周期数列,其中叫做数列的周期. 已知数列满足,若,当数列的周期为时,则数列的前2012项的和为 (    )
A.1339 +aB.1341+aC.671 +aD.672+a
B

试题分析:先要弄清题意中所说的周期数列的含义,然后利用这个定义,针对题目中的数列的周期,先求x3,再前三项和s3,最后求s2012
∵xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),∴x3=|x2-x1|=1-a,∴该数列的前3项的和s3=1+a+(1-a)=2∵数列{xn}周期为3,∴该数列的前2012项的和s2012=s2010+x1+x2==1341+a,选B.
点评:解决该试题的关键在于应由题意先求一个周期的和,再求该数列的前n项和sn
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网