题目内容
如图,已知椭圆
的中心在原点,其上、下顶点分别为
,点
在直线
上,点
到椭圆的左焦点的距离为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129063743835.png)
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
是椭圆上异于
的任意一点,点
在
轴上的射影为
,
为
的中点,直线
交直线
于点
,
为
的中点,试探究:
在椭圆上运动时,直线
与圆
:
的位置关系,并证明你的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129062021085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906218423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906233309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906327467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906342300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906358291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129063743835.png)
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906374289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906218423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906374289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906420310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906436333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906452399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906467399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906483475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906498280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906498313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906514357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906530398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906374289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906561513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906498313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906592602.png)
(Ⅰ)
(Ⅱ)直线
与圆
相切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906608636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906561513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906639550.png)
试题分析:解(1)依题意有:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906654352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906670605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906686407.png)
所以椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906608636.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906732383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906748195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906498313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906639550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906374289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906561513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906639550.png)
证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906842642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906857661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906873709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906888664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906904888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129069201226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906748195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906452399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906498313.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906483475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906982877.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906998370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012907013807.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129070291004.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129070442739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129070601968.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012907076669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906748195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906561513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012906639550.png)
点评:关于曲线的大题,第一个问题一般是让我们求出曲线的方程,这个相对较容易,而第二个问题,常与直线结合在一起,当曲线与直线相交时,在联立方程组求交点过程中,常用到根与系数的关系式:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129071221099.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012907138777.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目