题目内容
已知函数f(x)=, 其中为常数,若当x∈(-∞, 1]时, f(x)有意义,求实数a的取值范围.
(-, +∞).
解析:
解:>0, 且a2-a+1=(a-)2+>0,
∴ 1+2x+4x·a>0, a>
当x∈(-∞, 1]时, y=与y=都是减函数,
∴ y=在(-∞, 1]上是增函数,max=-,
∴ a>-, 故a的取值范围是(-, +∞).
练习册系列答案
相关题目
已知函数f(x)=
是定义域上的递减函数,则实数a的取值范围是( )
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|