题目内容
曲线y=x3+3x2+6x-10的切线中,求斜率最小的切线方程.
y′=3x2+6x+6=3(x+1)2+3,∴x=-1时,
切线最小斜率为3,此时,y=(-1)3+3×(-1)2+6(-1)-10=-14.
∴切线方程为y+14=3(x+1),即3x-y-11=0.
切线最小斜率为3,此时,y=(-1)3+3×(-1)2+6(-1)-10=-14.
∴切线方程为y+14=3(x+1),即3x-y-11=0.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
若点P在曲线y=x3-3x2+(3-
)x+
上移动,经过点P的切线的倾斜角为α,则角α的取值范围是( )
3 |
3 |
4 |
A、[0,
| ||||||
B、[0,
| ||||||
C、[
| ||||||
D、[0,
|