题目内容
在区间上随机取一实数,则该实数满足不等式的概率为 .
解析
表示函数的导数,在区间上,随机取值, 的概率为 ;
先后抛掷两枚骰子,出现点数之和为6的概率是____________
口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为____________.
红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.(1)求红队至少一名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.
设有关于x的一元二次方程x2+2ax+b2="0." (l)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.
一枚伍分硬币连掷3次,只有1次出现正面的概率为_________
.同时掷两个骰子,点数之和等于5的概率是
甲、乙两队各有n个队员,已知甲队的每个队员分别与乙队的每个队员各握手一次 (同队的队员之间不握手),从这n2次的握手中任意取两次.记事件A:两次握手中恰有3个队员参与.若事件A发生的概率P<,则n的最小值是_____________.