题目内容

已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}满足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.

(Ⅰ)求证:an+1=an+;

(Ⅱ)证明:数列{an-1}为等比数列,并求{an}的通项公式.

证明:(Ⅰ)由已知f(an)=(an-1)2,g(an)=4(an-1),

∵(an+1-an)g(an)+f(an)=0.∴(an+1-an)4(an-1)+(an-1)2=0,∴即3-2an-4an+1an+4an+1-1=0

(-1)+(2-2an)-4an+1(an-1)=0,即(an-1)(3an-4an+1+1)=0,

∵an≠1,∴3an-4an+1+1=0,∴aa+1=(3an+1)=an+.

(Ⅱ)证明:=,

∴{an-1}是以a1-1=0为首项,公比为的等比数列,∴an-1=()n-1,∴an=()n-1+1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网