题目内容
3.函数f(x)=ax3+bx2+cx+d图象如图所示,则( )A. | b∈(-∞,0) | B. | b∈(0,1) | C. | b∈(1,2) | D. | b∈(2,+∞) |
分析 先根据函数的图象得出函数的三个零点,从而得出函数的解析式,再结合图象的特征定出系数a的取值范围,从而问题解决.
解答 解:由图得:函数有三个零点:0,1,2.
由图象知x=0,1,2是方程f(x)=0的三个根,
则可设f(x)=ax(x-1)(x-2),
即f(x)=ax3-3ax2+2ax=ax3+bx2+cx+d.
因此b=-3a.
因为当x>2时f(x)>0,
所以a>0,b<0.
故b∈(-∞,0)
故选:A.
点评 本小题主要考查函数的图象、函数的图象的应用、函数的零点等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目
13.设点M(-1,$\sqrt{3}$)是抛物线y2=2px(p>0)准线上-点,过该抛物线焦点F的直线过A、B两点,若 $\overrightarrow{FM}$•$\overrightarrow{FA}$=0,则△MAB的面积为 ( )
A. | 2$\sqrt{3}$ | B. | $\frac{5}{2}$$\sqrt{6}$ | C. | 3$\sqrt{6}$ | D. | $\frac{7\sqrt{7}}{2}$ |
15.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈R,若对任意θ∈(0,$\frac{π}{2}$],都有f(msinθ)+f(1-m)>0成立,则实数m的取值范围( )
A. | (0,1) | B. | (0,2) | C. | (-∞,1) | D. | (-∞,1] |
13.函数y=|4x-3|的值域是(1,+∞),其定义域是( )
A. | (-∞,$\frac{1}{2}$) | B. | (1,+∞) | C. | (-∞,$\frac{1}{2}$)∪(1,+∞) | D. | ($\frac{1}{2}$,1) |