题目内容

已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则( )
A.f(2x)=e2x(x∈R)
B.f(2x)=ln2•lnx(x>0)
C.f(2x)=2ex(x∈R)
D.f(2x)=lnx+ln2(x>0)
【答案】分析:本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.
根据函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=ex的反函数,由此可得f(x)的解析式,进而获得f(2x).
解答:解:函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,
所以f(x)是y=ex的反函数,即f(x)=lnx,
∴f(2x)=ln2x=lnx+ln2(x>0),
选D.
点评:本题属于基础性题,解题思路清晰,方向明确,注意抓住函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称这一特点,确认f(x)是原函数的反函数非常重要,是本题解决的突破口.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网