题目内容
已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为分析:先根据抛物线方程求出焦点坐标,再由抛物线的性质知:当P,Q和焦点三点共线且点P在中间的时候距离之和最小,进而先求出纵坐标的值,代入到抛物线中可求得横坐标的值从而得到答案.
解答:解:∵y2=4x
∴p=2,焦点坐标为(1,0)
依题意可知当P,Q和焦点三点共线且点P在中间的时候,距离之和最小如图,
故P的纵坐标为-1,然后代入抛物线方程求得x=
,
故答案为:(
,-1).
∴p=2,焦点坐标为(1,0)
依题意可知当P,Q和焦点三点共线且点P在中间的时候,距离之和最小如图,
故P的纵坐标为-1,然后代入抛物线方程求得x=
1 |
4 |
故答案为:(
1 |
4 |
点评:本题主要考查抛物线的基本性质.属基础题.
练习册系列答案
相关题目
已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )
A、(
| ||
B、(
| ||
C、(1,2) | ||
D、(1,-2) |