题目内容

6.设P,Q为一个正方体表面上的两点,已知此正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,那么符合条件的直线PQ有13条.

分析 由正方体自身的对称性可知,若正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,则PQ比过正方体中心,由此分三种情况,即P,Q为正方体一体对角线两顶点时,P,Q为正方两相对棱中点时,P,Q为正方体对面中心时求得符合条件的直线PQ的条数.

解答 解:若正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,则PQ比过正方体中心,否则,正方体绕着直线PQ旋转θ(0<θ<2π)角后,中心不能回到原来的位置.
共有三种情况:如图,

当P,Q为正方体一体对角线两顶点时,把正方体绕PQ旋转$\frac{2π}{3},\frac{4π}{3}$,正方体回到原来的位置,此时直线共有4条;
当P,Q为正方两相对棱中点时,把正方体绕PQ旋转π,正方体回到原来的位置,此时直线共有6条;
当P,Q为正方体对面中心时,把正方体绕PQ旋转$\frac{π}{2},π,\frac{3π}{2}$,正方体回到原来的位置,此时直线共有3条.
综上,符合条件的直线PQ有4+6+3=13条.
故答案为:13.

点评 本题考查了棱柱的结构特征,考查了学生的空间想象和思维能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网