题目内容
已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足CE |
CA |
CF |
CB |
(Ⅰ)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角B-AC-D的平面角的正切值.
分析:(Ⅰ)欲证AB∥平面DEF,根据直线与平面平行的判定定理可知只需证AB∥平面DEF内一直线平行即可,而根据比例关系可知AB∥EF;
(Ⅱ)过D点作DG⊥AC于G,连接BG,根据二面角平面角定义可知∠ADB是二面角A-CD-B的平面角,∠BGD是二面角B-AC-D的平面角,在Rt△BDG中求出此角即可.
(Ⅱ)过D点作DG⊥AC于G,连接BG,根据二面角平面角定义可知∠ADB是二面角A-CD-B的平面角,∠BGD是二面角B-AC-D的平面角,在Rt△BDG中求出此角即可.
解答:解:(Ⅰ)AB∥平面DEF.在△ABC中,
∵E、F分别是AC、BC上的点,且满足
=
=k,
∴AB∥EF.(2分)
∵AB?平面DEF,EF?平面DEF,∴AB∥平面DEF.(5分)
(Ⅱ)过D点作DG⊥AC于G,连接BG,
∵AD⊥CD,BD⊥CD,
∴∠ADB是二面角A-CD-B的平面角.(7分)
∴∠ADB=90°,即BD⊥AD.
∴BD⊥平面ADC.∴BD⊥AC.
∴AC⊥平面BGD.∴BG⊥AC.
∴∠BGD是二面角B-AC-D的平面角.(9分)
在ADC中,AD=a,DC=
a,AC=2a,
∴DG=
=
=
.(11分)
在Rt△BDG中,tan∠BGD=
=
.(13分)
∵E、F分别是AC、BC上的点,且满足
CE |
CA |
CF |
CB |
∴AB∥EF.(2分)
∵AB?平面DEF,EF?平面DEF,∴AB∥平面DEF.(5分)
(Ⅱ)过D点作DG⊥AC于G,连接BG,
∵AD⊥CD,BD⊥CD,
∴∠ADB是二面角A-CD-B的平面角.(7分)
∴∠ADB=90°,即BD⊥AD.
∴BD⊥平面ADC.∴BD⊥AC.
∴AC⊥平面BGD.∴BG⊥AC.
∴∠BGD是二面角B-AC-D的平面角.(9分)
在ADC中,AD=a,DC=
3 |
∴DG=
AD•DC |
AC |
| ||
2a |
| ||
2 |
在Rt△BDG中,tan∠BGD=
BD |
DG |
2
| ||
3 |
点评:本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.
练习册系列答案
相关题目