题目内容
(06年山东卷理)若 .
答案:2
解析:
(06年山东卷理)设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相连能构成四边形,则向量d为( )
(A)(2,6) (B)(-2,6) (C)(2,-6) (D)(-2,-6)
(06年山东卷理)下列四个命题中,真命题的序号有 (写出所有真命题的序号).
①将函数y=的图象按向量y=(-1,0)平移,得到的图象对应的函数表达式为y=
②圆x2+y2+4x-2y+1=0与直线y=相交,所得弦长为2
③若sin(+)=,sin(-)=,则tancot=5
④如图,已知正方体ABCD- A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.
(16题图)