题目内容
已知斜三棱柱ABC-A1B1C1的侧面BB1C1C是边长为2的菱形,∠B1BC=60°,侧面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C为30°.(1)求证:AC⊥平面BB1C1C;
(2)求AB1与平面BB1C1C所成角的正切值.
分析:(1)由平面BB1C1C⊥平面ABC且平面BB1C1C∩平面ABC=BC,AC⊥BC,由面面垂直的性质定理可得AC⊥平面BB1C1C
(2)由(1)知AC⊥平面BB1C1C,则有∠AB1C为AB1与平面BB1C1C所成的角,连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角,在Rt△ACB1中可求得tan∠∠AB1C.
(2)由(1)知AC⊥平面BB1C1C,则有∠AB1C为AB1与平面BB1C1C所成的角,连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角,在Rt△ACB1中可求得tan∠∠AB1C.
解答:证明:(1)∵平面BB1C1C⊥平面ABC
平面BB1C1C∩平面ABC=BC
又∵AC⊥BC,AC?平面ABC
∴AC⊥平面BB1C1C(6分)
(2)取BB1的中点D,
AC⊥平面BB1C1C
∴AC⊥BB1
∴BB1⊥平面ADC
∴AD⊥BB1
∴∠CDA为二面角A-BB1-C的平面角
∴∠CDA=30°
∵CD=
∴AC=1(8分)
连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角(10分)
在Rt△ACB1中tan∠AB1C=
=
(12分)
平面BB1C1C∩平面ABC=BC
又∵AC⊥BC,AC?平面ABC
∴AC⊥平面BB1C1C(6分)
(2)取BB1的中点D,
AC⊥平面BB1C1C
∴AC⊥BB1
∴BB1⊥平面ADC
∴AD⊥BB1
∴∠CDA为二面角A-BB1-C的平面角
∴∠CDA=30°
∵CD=
3 |
∴AC=1(8分)
连接B1C,则∠AB1C为AB1与平面BB1C1C所成的角(10分)
在Rt△ACB1中tan∠AB1C=
AC |
B1C |
1 |
2 |
点评:本题主要考查线线垂直,线面垂直,面面垂直的转化及在求线面角,二面角中的应用.
练习册系列答案
相关题目