搜索
题目内容
对于任意实数
x
,不等式
(
a
-
2)
x
2
-
2(
a
-
2)
x
-
4
<
0
恒成立,求实数
a
的取值范围.
试题答案
相关练习册答案
答案:
练习册系列答案
随堂1加1导练系列答案
零距离学期系统总复习期末暑假衔接合肥工业大学出版社系列答案
期末冲刺100分创新金卷完全试卷系列答案
北大绿卡刷题系列答案
五州图书超越假期暑假内蒙古大学出版社系列答案
冲刺名校小考系列答案
黄冈中考考点突破系列答案
初中能力测试卷系列答案
智慧学堂数法题解新教材系列答案
小升初实战训练系列答案
相关题目
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
f(
x
1
)-f(
x
2
)
x
1
-
x
2
<0
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]
.
已知函数f(x)定义域为R且同时满足:①f(x)图象左移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a,b,总有
f(a)-f(b)
a-b
>0
成立.
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设
g(x)=
1
f(x)
+
1
2-x
,如果f(0)=1,判断g(x)=0是否有负实根并说明理由;
(3)如果x
1
>0,x
2
<0且x
1
+x
2
+2<0,比较f(-x
1
)与f(-x
2
)的大小并简述理由.
已知函数F(x)=x
3
f(x)(x∈R)是[0,+∞)上的增函数,又f(x)是偶函数,那么对于任意实数a,下列不等关系成立的是
A.
F(a
2
-2a+2)≥F(2)
B.
F(a
2
-2a+2)≤F(2)
C.
F(a
2
-2a+2)≥F(1)
D.
F(a
2
-2a+2)≤F(1)
已知函数f(x)定义域为R且同时满足:①f(x)图象左移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a,b,总有
成立.
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设
,如果f(0)=1,判断g(x)=0是否有负实根并说明理由;
(3)如果x
1
>0,x
2
<0且x
1
+x
2
+2<0,比较f(-x
1
)与f(-x
2
)的大小并简述理由.
定义在R上的函数y=f(x),若对任意不等实数x
1
,x
2
满足
,且对于任意的x,y∈R,不等式f(x
2
-2x)+f(2y-y
2
)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
的取值范围为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总