题目内容
已知f(x)=lnx,g(x)=1 |
2 |
7 |
2 |
(Ⅰ)求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(Ⅲ)若ln(x+1)<x+c对任意x都成立,求实数c的取值范围.
分析:(I)先根据导数的几何意义求出函数在x=1处的导数,得到切线的斜率,再利用点斜式方程求出切线方程,最后将切线方程与g(x)=
x2+mx+
(m<0)联立方程组,使方程组只有一解,利用判别式建立等量关系,求出m即可;
(II)先求出h(x)的解析式,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值;(III)先将c分离出来,然后转化成c≥(ln(x+1)-x)max,结合第二问可知(ln(x+1)-x)max,从而得到c的范围.
1 |
2 |
7 |
2 |
(II)先求出h(x)的解析式,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值;(III)先将c分离出来,然后转化成c≥(ln(x+1)-x)max,结合第二问可知(ln(x+1)-x)max,从而得到c的范围.
解答:解:(Ⅰ)∵f′(x)=
,∴f'(1)=1.
∴直线l的斜率为1,且与函数f(x)的图象的切点坐标为(1,0).
∴直线l的方程为y=x-1.(2分)
又∵直线l与函数y=g(x)的图象相切,
∴方程组
有一解.
由上述方程消去y,并整理得x2+2(m-1)x+9=0①
依题意,方程①有两个相等的实数根,
∴△=[2(m-1)]2-4×9=0
解之,得m=4或m=-2
∵m<0,∴m=-2.(5分)
(Ⅱ)由(Ⅰ)可知g(x)=
x2-2x+
,
∴g'(x)=x-2∴h(x)=ln(x+1)-x+2(x>-1).(6分)
∴h′(x)=
-1=
.(7分)
∴当x∈(-1,0)时,h'(x)>0,当x∈(0,+∞)时,h'(x)<0.
∴当x=0时,h(x)取最大值,其最大值为2,
(Ⅲ).ln(x+1)-x<c恒成立,所以c≥(ln(x+1)-x)max,
由(Ⅱ)可知ln(x+1)-x的最大值为0,
所以c≥0.
1 |
x |
∴直线l的斜率为1,且与函数f(x)的图象的切点坐标为(1,0).
∴直线l的方程为y=x-1.(2分)
又∵直线l与函数y=g(x)的图象相切,
∴方程组
|
由上述方程消去y,并整理得x2+2(m-1)x+9=0①
依题意,方程①有两个相等的实数根,
∴△=[2(m-1)]2-4×9=0
解之,得m=4或m=-2
∵m<0,∴m=-2.(5分)
(Ⅱ)由(Ⅰ)可知g(x)=
1 |
2 |
7 |
2 |
∴g'(x)=x-2∴h(x)=ln(x+1)-x+2(x>-1).(6分)
∴h′(x)=
1 |
x+1 |
-x |
x+1 |
∴当x∈(-1,0)时,h'(x)>0,当x∈(0,+∞)时,h'(x)<0.
∴当x=0时,h(x)取最大值,其最大值为2,
(Ⅲ).ln(x+1)-x<c恒成立,所以c≥(ln(x+1)-x)max,
由(Ⅱ)可知ln(x+1)-x的最大值为0,
所以c≥0.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数求闭区间上函数的最值等基础题知识,考查运算求解能力、推理论证能力,考查化归与转化思想,属于基础题.
练习册系列答案
相关题目