题目内容

在数列(an)中,an=2n-1,若一个7行12列的矩阵的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为(  )
A.18B.28C.48D.63
该矩阵的第i行第j列的元素cij=ai•aj+ai+aj=(2i-1)(2j-1)+2i-1+2j-1=2i+j-1(i=1,2,…,7;j=1,2,…,12),
当且仅当:i+j=m+n时,aij=amn(i,m=1,2,…,7;j,n=1,2,…,12),
因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网