题目内容

已知向量
p
=(-cos 2x,a),
q
=(a,2-
3
sin 2x),函数f(x)=
p
q
-5(a>0).
(1)求函数f(x)(x∈R)的值域;
(2)当a=2时,求函数y=f(x)在[0,π]上单调递增区间.
分析:(1)根据向量数量积的坐标公式,得到f(x)的含有参数a的三角函数表达式,再用辅助角公式合并,即可根据正弦函数的图象与性质得到函数f(x)(x∈R)的值域;
(2)a=2时,f(x)=-4sin(2x+
π
6
)-1
.由正弦函数的单调区间的结论列式,可得到函数f(x)的含周期的单调增区间,再结合x∈[0,π],取交集可得函数y=f(x)在[0,π]上单调递增区间.
解答:解:(1)f(x)=
p
q
-5=-acos2x-
3
asin2x+2a-5
=-2asin(2x+
π
6
)+2a-5
.…(3分)
因为x∈R,所以-1≤sin(2x+
π
6
)≤1

因为a>0,所以-2a×1+2a-5≤f(x)≤-2a×(-1)+2a-5.
故f(x)的值域为[-5,4a-5].…(6分)
(2)a=2时,f(x)=-4sin(2x+
π
6
)-1
,…(8分)
π
2
+2kπ≤2x+
π
6
2
+2kπ,k∈Z
,得
π
6
+kπ≤x≤
3
+kπ,k∈Z
.…(10分)
因为x∈[0,π],所以取k=0,得
π
6
≤x≤
3

∴函数y=f(x)在[0,π]上的单调递增区间为[
π
6
3
]
.…(12分)
点评:本题给出向量的数量积的一个函数,求函数的单调区间与值域.着重考查了平面向量数量积的坐标公式、三角恒等化简和辅助角公式等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网