题目内容

设f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1处有极值,则下列点中一定在x轴上的是(  )
分析:根据题意先对f(x)=x(ax2+bx+c)求导,导函数为二次函数,再利用韦达定理求得b=0,从而可解决问题.
解答:解:∵f(x)=x(ax2+bx+c)=ax3+bx2+cx,
∴f′(x)=3ax2+2bx+c,
∵f(x)在x=1和x=-1处有极值,
∴1,-1是方程3ax2+2bx+c=0的两根,
∴1+(-1)=-
2b
3a
c
3a
=-1,故b=0,c=-3a≠0;可排除B、C、D.
故选A.
点评:本题考查根与系数的关系及函数在某点取得极值的条件,着重考查根与系数的关系中韦达定理的使用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网