题目内容

设实数x,y满足x2-y2+x+3y-2≥0,当x∈[-2,2]时,x+y的最大值是


  1. A.
    0
  2. B.
    3
  3. C.
    6
  4. D.
    9.
C
分析:在平面直角坐标系中,画出实数x,y满足x2-y2+x+3y-2≥0,的可行域,确定目标函数的最大值即可.
解答:解:实数x,y满足x2-y2+x+3y-2≥0,转化为(x+2-(y-2≥0.即|x+|≥|y-|
当x∈[-2,2]时,
|x+|≥|y-|表示的可行域如图:
要求x+y的最大值,就是求z=x+y经过可行域内的点A时取得.
可得A(2,4),
所以x+y的最大值为:6.
故选C.
点评:本题考查简单线性规划的应用,转化思想的应用,考查表达式的几何意义与计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网