题目内容
已知向量
=(1,n),
= (-1,n),若
⊥
,则|
|=( )
| a |
| b |
| a |
| b |
| a |
分析:由向量
=(1,n),
= (-1,n),
⊥
,知
•
=n2-1=0,由此能求出|
|.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
解答:解:∵向量
=(1,n),
= (-1,n),
⊥
,
∴
•
=n2-1=0,
∴n2=1,
∴|
|=
=
.
故选B.
| a |
| b |
| a |
| b |
∴
| a |
| b |
∴n2=1,
∴|
| a |
| n2+1 |
| 2 |
故选B.
点评:本题考查数量积判断两个平面向量垂直关系的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
已知向量
=(1,n);
=(-1,n),若2
+
与
垂直,则|
|=( )
| a |
| b |
| a |
| b |
| b |
| a |
| A、1 | ||||
B、
| ||||
C、
| ||||
| D、4 |