题目内容
已知过点A(4,6)的双曲线
=1(a>0,b>0)的一个焦点为F(4,0),直线l过点F且与双曲线右支交于点M、N,点B为双曲线右准线与x轴的交点.
(1)求双曲线的方程;
(2)若△BMN的面积为36
,求直线l的方程;
(3)若点P为点M关于x轴的对称点,求证:B、P、N三点共线.
解:(1)由题意得
,求得a=2,b=2![](http://thumb.zyjl.cn/pic5/latex/21.png)
∴双曲线的方程为
=1
(2)设直线的方程为x=ty+4,
由
消去x得(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2)
∴y1+y2=
,y1y2=![](http://thumb.zyjl.cn/pic5/latex/38439.png)
∵直线l与双曲线右支相交,
∴x1x2=(ty1+4)(ty2+4)=t2•
+4t•
+16>0
∴
<0,t2<![](http://thumb.zyjl.cn/pic5/latex/8.png)
∴S△BMN=
•|BF|•|y1-y2|=
=36![](http://thumb.zyjl.cn/pic5/latex/559.png)
∴t2=
或
,∵t2<
,∴t=±![](http://thumb.zyjl.cn/pic5/latex/13.png)
∴直线l的方程为2x+y-8=0或2x-y-8=0
(3)∵点P为点M关于x轴的对称点,则p(x1,-y1),
∴
=(x1-1,-y1),
=(x1,-y1),
∵(x1-1)y2-(x2-1)(-y1)=2t•
+3•
=0
∴
与
共线,
∴B,P,N三点共线.
分析:(1)把点A代入双曲线方程求得a和b的关系,进而根据焦点坐标求得c,可知a和b的另一关系式,联立求得a和b,则双曲线的方程可得.
(2)设直线方程,与双曲线方程联立消去x,设出M,N的坐标,根据韦达定理表示出y1+y2和y1y2,进而根据直线l与双曲线右支相交,
判断出x1x2<0求得t的范围,进而利用三角形面积公式表示出△BMN的面积求得t,则直线l的方程可得.
(3)根据点M的坐标表示出点P的坐标,进而分别表示出
和
,进而求得
-
=0,判断出
和
共线,进而推断出B,P,N三点共线.
点评:本土主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题和基本的运算能力.
![](http://thumb.zyjl.cn/pic5/latex/38435.png)
![](http://thumb.zyjl.cn/pic5/latex/21.png)
∴双曲线的方程为
![](http://thumb.zyjl.cn/pic5/latex/38436.png)
(2)设直线的方程为x=ty+4,
由
![](http://thumb.zyjl.cn/pic5/latex/38437.png)
设M(x1,y1),N(x2,y2)
∴y1+y2=
![](http://thumb.zyjl.cn/pic5/latex/38438.png)
![](http://thumb.zyjl.cn/pic5/latex/38439.png)
∵直线l与双曲线右支相交,
∴x1x2=(ty1+4)(ty2+4)=t2•
![](http://thumb.zyjl.cn/pic5/latex/38439.png)
![](http://thumb.zyjl.cn/pic5/latex/38438.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/38440.png)
![](http://thumb.zyjl.cn/pic5/latex/8.png)
∴S△BMN=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
![](http://thumb.zyjl.cn/pic5/latex/38441.png)
![](http://thumb.zyjl.cn/pic5/latex/559.png)
∴t2=
![](http://thumb.zyjl.cn/pic5/latex/38442.png)
![](http://thumb.zyjl.cn/pic5/latex/96.png)
![](http://thumb.zyjl.cn/pic5/latex/8.png)
![](http://thumb.zyjl.cn/pic5/latex/13.png)
∴直线l的方程为2x+y-8=0或2x-y-8=0
(3)∵点P为点M关于x轴的对称点,则p(x1,-y1),
∴
![](http://thumb.zyjl.cn/pic5/latex/3730.png)
![](http://thumb.zyjl.cn/pic5/latex/31880.png)
∵(x1-1)y2-(x2-1)(-y1)=2t•
![](http://thumb.zyjl.cn/pic5/latex/38439.png)
![](http://thumb.zyjl.cn/pic5/latex/38438.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/3730.png)
![](http://thumb.zyjl.cn/pic5/latex/31880.png)
∴B,P,N三点共线.
分析:(1)把点A代入双曲线方程求得a和b的关系,进而根据焦点坐标求得c,可知a和b的另一关系式,联立求得a和b,则双曲线的方程可得.
(2)设直线方程,与双曲线方程联立消去x,设出M,N的坐标,根据韦达定理表示出y1+y2和y1y2,进而根据直线l与双曲线右支相交,
判断出x1x2<0求得t的范围,进而利用三角形面积公式表示出△BMN的面积求得t,则直线l的方程可得.
(3)根据点M的坐标表示出点P的坐标,进而分别表示出
![](http://thumb.zyjl.cn/pic5/latex/3730.png)
![](http://thumb.zyjl.cn/pic5/latex/31880.png)
![](http://thumb.zyjl.cn/pic5/latex/3730.png)
![](http://thumb.zyjl.cn/pic5/latex/31880.png)
![](http://thumb.zyjl.cn/pic5/latex/3730.png)
![](http://thumb.zyjl.cn/pic5/latex/31880.png)
点评:本土主要考查了直线与圆锥曲线的综合问题.考查了学生综合分析问题和基本的运算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目