题目内容

化简求值
tan70°cos10°(
3
tan20°-1)

②已知sin(α+
π
3
)+sinα=-
4
3
5
(-
π
2
<α<0)
,求cosα的值.
分析:①先从函数名入手,将“切”化“弦”,再从“形”入手利用两角差的正弦公式化简通分后的分式,最后从“角”入手,利用二倍角公式即可得结果;
②先利用两角和的正弦公式,将已知化简,得sin(α+
π
6
)=-
4
5
,再通过构造角的方法,利用两角差的余弦公式即可求得所求值
解答:解:①tan70°cos10°( 
3
tan20°-1)
=cot20°cos10°( 
3
sin20°
cos20°
-1)
=cot20°cos10°(
3
sin20°-cos20°
cos20°

=
cos20°
sin20°
×cos10°×(
2(
3
2
sin20°-
1
2
cos20°)
cos20°

=
cos20°
sin20°
×cos10°×(
2sin(20°-30°)
cos20°

=
cos20°
sin20°
×(-
sin20°
cos20°

=-1
②∵sin(α+
π
3
)+sinα=-
4
3
5

1
2
sinα+
3
2
cosα+sinα=-
4
3
5

3
sin(α+
π
6
)=-
4
3
5

∴sin(α+
π
6
)=-
4
5
,又∵-
π
2
<α<0

∴cos(α+
π
6
)=
3
5

∴cosα=cos(α+
π
6
-
π
6
)=
3
2
cos(α+
π
6
)+
1
2
sin(α+
π
6
)=
3
2
×
3
5
+
1
2
×(-
4
5
)=
3
3
-4
10
点评:本题主要考查了三角变换公式在化简求值中的应用,三角代换、变换角、特殊值特殊角三角函数值的应用等技巧,有一定难度,属中档题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网