题目内容

化简求值
tan70°cos10°(
3
tan20°-1)

②已知sin(α+
π
3
)+sinα=-
4
3
5
(-
π
2
<α<0)
,求cosα的值.
①tan70°cos10°( 
3
tan20°-1)
=cot20°cos10°( 
3
sin20°
cos20°
-1)
=cot20°cos10°(
3
sin20°-cos20°
cos20°

=
cos20°
sin20°
×cos10°×(
2(
3
2
sin20°-
1
2
cos20°)
cos20°

=
cos20°
sin20°
×cos10°×(
2sin(20°-30°)
cos20°

=
cos20°
sin20°
×(-
sin20°
cos20°

=-1
②∵sin(α+
π
3
)+sinα=-
4
3
5

1
2
sinα+
3
2
cosα+sinα=-
4
3
5

3
sin(α+
π
6
)=-
4
3
5

∴sin(α+
π
6
)=-
4
5
,又∵-
π
2
<α<0

∴cos(α+
π
6
)=
3
5

∴cosα=cos(α+
π
6
-
π
6
)=
3
2
cos(α+
π
6
)+
1
2
sin(α+
π
6
)=
3
2
×
3
5
+
1
2
×(-
4
5
)=
3
3
-4
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网