题目内容
化简求值
①tan70°cos10°(
tan20°-1)
②已知sin(α+
)+sinα=-
,(-
<α<0),求cosα的值.
①tan70°cos10°(
3 |
②已知sin(α+
π |
3 |
4
| ||
5 |
π |
2 |
①tan70°cos10°(
tan20°-1)
=cot20°cos10°(
-1)
=cot20°cos10°(
)
=
×cos10°×(
)
=
×cos10°×(
)
=
×(-
)
=-1
②∵sin(α+
)+sinα=-
,
∴
sinα+
cosα+sinα=-
即
sin(α+
)=-
∴sin(α+
)=-
,又∵-
<α<0,
∴cos(α+
)=
∴cosα=cos(α+
-
)=
cos(α+
)+
sin(α+
)=
×
+
×(-
)=
3 |
=cot20°cos10°(
| ||
cos20° |
=cot20°cos10°(
| ||
cos20° |
=
cos20° |
sin20° |
2(
| ||||||
cos20° |
=
cos20° |
sin20° |
2sin(20°-30°) |
cos20° |
=
cos20° |
sin20° |
sin20° |
cos20° |
=-1
②∵sin(α+
π |
3 |
4
| ||
5 |
∴
1 |
2 |
| ||
2 |
4
| ||
5 |
即
3 |
π |
6 |
4
| ||
5 |
∴sin(α+
π |
6 |
4 |
5 |
π |
2 |
∴cos(α+
π |
6 |
3 |
5 |
∴cosα=cos(α+
π |
6 |
π |
6 |
| ||
2 |
π |
6 |
1 |
2 |
π |
6 |
| ||
2 |
3 |
5 |
1 |
2 |
4 |
5 |
3
| ||
10 |
练习册系列答案
相关题目