ÌâÄ¿ÄÚÈÝ
¶ÔÓÚÊýÁÐ{An}£ºA1£¬A2£¬A3£¬¡£¬An£¬Èô²»¸Ä±äA1£¬½ö¸Ä±äA2£¬A3£¬¡£¬AnÖв¿·ÖÏîµÄ·ûºÅ£¬µÃµ½µÄÐÂÊýÁÐ{an}³ÆΪÊýÁÐ{An}µÄÒ»¸öÉú³ÉÊýÁУ®Èç½ö¸Ä±äÊýÁÐ1£¬2£¬3£¬4£¬5µÄµÚ¶þ¡¢ÈýÏîµÄ·ûºÅ¿ÉÒԵõ½Ò»¸öÉú³ÉÊýÁÐ1£¬-2£¬-3£¬4£¬5£®ÒÑÖªÊýÁÐ{an}ΪÊýÁÐ{
}(n¡ÊN*)µÄÉú³ÉÊýÁУ¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}Âú×㣺S3n=
(1-
)£¬Çó{an}µÄͨÏʽ£»
£¨3£©Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
£¬m¡ÊN*£¬m¡Ü2n-1}£®
1 |
2n |
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}Âú×㣺S3n=
1 |
7 |
1 |
8n |
£¨3£©Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
2m-1 |
2n |
·ÖÎö£º£¨1£©¸ù¾ÝÉú³ÉÊýÁеĶ¨Ò壬¿ÉÖªµ±n=3ʱ£¬a1=
£¬a2¡¢a3·Ö±ðÔÚ¡À
¡¢¡À
ÖÐÈ¡Öµ£®Óɴ˸ø³ö{an}µÄËùÓпÉÄܵÄÇé¿ö£¬¼´¿ÉËã³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©¸ù¾Ý{an}µÄÇ°3nÏîºÍÓëͨÏîµÄ¹Øϵʽ£¬¿ÉµÃµ±n=1ʱS3=
£¬µ±n¡Ý2ʱa3n-2+a3n-1+a3n=S3n-S3n-3=
£®ÓÉa3n-2¡¢a3n-1¡¢a3nµÄ8ÖÖ×éºÏ¼ÓÒÔÍƶϣ¬¿ÉµÃ£ºµ±ÇÒ½öµ±a3n-2=
¡¢a3n-1=-
ÇÒa3n=-
ʱ£¬ÒÔÉÏÏàµÈ¹Øϵ¿ÉÒÔ³ÉÁ¢£®Óɴ˼´¿ÉµÃµ½Âú×ãÌõ¼þµÄ{an}µÄͨÏʽ£»
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¢Ùµ±n=1ʱÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±£¬Sk=
(m¡ÊN*£¬m¡Ü2k-1)£¬Ôòµ±n=k+1ʱ£¬Sk+1=Sk¡À
=
=
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬´Ó¶øÖ¤³öSk+1=
£¨m¡ÊN*£¬m¡Ü2k£©£¬¼´ÓÉn=kʱÃüÌâ³ÉÁ¢¿ÉÍƳön=k+1ʱÃüÌâÒ²³ÉÁ¢£®¸ù¾ÝÒÔÉÏÁ½µã£¬¿ÉÒÔÍƶϳöÔÃüÌâ³ÉÁ¢£®
1 |
2 |
1 |
4 |
1 |
8 |
£¨2£©¸ù¾Ý{an}µÄÇ°3nÏîºÍÓëͨÏîµÄ¹Øϵʽ£¬¿ÉµÃµ±n=1ʱS3=
1 |
8 |
1 |
8n |
4 |
8n |
2 |
8n |
1 |
8n |
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¢Ùµ±n=1ʱÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±£¬Sk=
2m-1 |
2k |
1 |
2k+1 |
2k+1Sk¡À1 |
2k+1 |
2(2m-1)¡À1 |
2k+1 |
2m-1 |
2k+1 |
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬µÃa1=
£¬|an|=
(n¡ÊN*£¬n¡Ý2)£¬
¡à¸ù¾ÝÉú³ÉÊýÁеĶ¨Ò壬¿ÉµÃa2=¡À
£¬a3=¡À
£®
ÓÖ¡ß
+
+
=
£¬
+
-
=
£¬
-
+
=
£¬
-
-
=
£¬
¡àΪ
£¬
£¬
£¬
£®
£¨2£©¡ßS3n=
(1-
)£¬
µ±n=1ʱ£¬a1+a2+a3=S3=
(1-
)=
£¬
µ±n¡Ý2ʱ£¬a3n-2+a3n-1+a3n=S3n-S3n-3=
(1-
)-
(1-
)=
¡ß{an}ÊÇ{
}(n¡ÊN*)µÄÉú³ÉÊýÁÐ
¡àa3n-2=¡À
£¬a3n-1=¡À
£¬a3n=¡À
£»
¿ÉµÃa3n-2+a3n-1+a3n=¡À
¡À
¡À
=
(¡À4¡À2¡À1)=
(n¡ÊN*)£¬
ÔÚÒÔÉϸ÷ÖÖ×éºÏÖУ¬µ±ÇÒ½öµ±a3n-2=
£¬a3n-1=-
£¬a3n=-
(n¡ÊN*)ʱ£¬ÏàµÈ¹Øϵ³ÉÁ¢£®
¡àan=
£¬k¡ÊN*£®
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùn=1ʱ£¬S1=
£¬ÃüÌâ³ÉÁ¢£®
¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
£¬m¡ÊN*£¬m¡Ü2k-1}
ÓɼÙÉèµÃSk=
(m¡ÊN*£¬m¡Ü2k-1)¡£¨13·Ö£©
Ôòµ±n=k+1ʱ£¬Sk+1=
¡À
¡À
¡À¡¡À
¡À
=Sk¡À
=
Sk+1=
=
£¨m¡ÊN*£¬m¡Ü2k-1£©¡£¨15·Ö£©
¼´Sk+1=
»òSk+1=
£¨m¡ÊN*£¬m¡Ü2k-1£©
¼´Sk+1=
£¨m¡ÊN*£¬m¡Ü2k£©¡àn=k+1ʱ£¬ÃüÌâ³ÉÁ¢ ¡£¨17·Ö£©
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
£¬m¡ÊN*£¬m¡Ü2n-1}£®
1 |
2 |
1 |
2n |
¡à¸ù¾ÝÉú³ÉÊýÁеĶ¨Ò壬¿ÉµÃa2=¡À
1 |
4 |
1 |
8 |
ÓÖ¡ß
1 |
2 |
1 |
4 |
1 |
8 |
7 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
5 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
3 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
8 |
¡àΪ
1 |
8 |
3 |
8 |
5 |
8 |
7 |
8 |
£¨2£©¡ßS3n=
1 |
7 |
1 |
8n |
µ±n=1ʱ£¬a1+a2+a3=S3=
1 |
7 |
1 |
8 |
1 |
8 |
µ±n¡Ý2ʱ£¬a3n-2+a3n-1+a3n=S3n-S3n-3=
1 |
7 |
1 |
8n |
1 |
7 |
1 |
8n-1 |
1 |
8n |
¡ß{an}ÊÇ{
1 |
2n |
¡àa3n-2=¡À
1 |
23n-2 |
1 |
23n-1 |
1 |
23n |
¿ÉµÃa3n-2+a3n-1+a3n=¡À
1 |
23n-2 |
1 |
23n-1 |
1 |
23n |
1 |
8n |
1 |
8n |
ÔÚÒÔÉϸ÷ÖÖ×éºÏÖУ¬µ±ÇÒ½öµ±a3n-2=
4 |
8n |
2 |
8n |
1 |
8n |
¡àan=
|
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùn=1ʱ£¬S1=
1 |
2 |
¢Ú¼ÙÉèn=k£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
2m-1 |
2k |
ÓɼÙÉèµÃSk=
2m-1 |
2k |
Ôòµ±n=k+1ʱ£¬Sk+1=
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2k |
1 |
2k+1 |
1 |
2k+1 |
2k+1Sk¡À1 |
2k+1 |
2k+1Sk¡À1 |
2k+1 |
2(2m-1)¡À1 |
2k+1 |
¼´Sk+1=
2¡Á(2m-1)-1 |
2k+1 |
2¡Á(2m)-1 |
2k+1 |
¼´Sk+1=
2m-1 |
2k+1 |
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
2m-1 |
2n |
µãÆÀ£º±¾Ìâ¸ø³öÊýÁÐ{An}µÄÉú³ÉÊýÁÐ{an}µÄ¶¨Ò壬ÇóS3µÄ¿ÉÄÜÖµ²¢Ö¤Ã÷SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏ£®×ÅÖØ¿¼²éÁËÊýÁеÄͨÏîÓëÇóºÍ¹«Ê½¡¢µÈ±ÈÊýÁеÄͨÏʽÓëÇ°nÏîºÍ¹«Ê½¡¢ÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÓëÕýÕûÊýnÓйصÄÃüÌâµÈ֪ʶ£¬ÊôÓÚÄÑÌ⣮ͬʱ¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦¡¢Âß¼ÍÆÀíÄÜÁ¦Óë·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÁËת»¯»¯¹éÓë·ÖÀàÌÖÂÛµÄÊýѧ˼ÏëµÄÔËÓã¬ÊÇÒ»µÀ×ÛºÏÐÔ½ÏÇ¿µÄÊÔÌ⣮
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿