题目内容
已知函数f(x)定义在区间(-1,1)上,f(




(Ⅰ)证明:f(x)在(-1,1)上为奇函数;
(Ⅱ)求f(an)的表达式;
(Ⅲ)是否存在自然数m,使得对任意n∈N,都有bn<成立,若存在,求出m的最小值;若不存在,请说明理由.
答案:解:(1)令x=y=0,则f(0)=0,再令x=0,得f(0)-f(y)=f(-y),所以f(-y)=-f(y),y∈(-1,1),故f(x)在(-1,1)上为奇函数.
(Ⅱ)∵f(a1)=f()=-1,
由(Ⅰ)知f(x)+f(y)=f(),
∴f(an+1)=f()=f(
)=f(an)+f(an)=2f(an),
即=2,∴{f(an)}是以-1为首项,2为公比的等比数列,从而有f(an)=-2n-1.
(10)先求bn的表达式,bn=-(1+
若bn<恒成立(n∈N+),则-2+
-2,即m>
∵n∈N+,∴当n=1时,有最大值4,故m>4.
又∵m∈N,
∴存在m=5,使得对任意n∈N+,都有bn<成立.

练习册系列答案
相关题目